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Likelihood Analysis of Geographic Variation in Allelic
Frequencies

II. The Logit Model and an Extension to Multiple Loci!

Peter E. SMOUSE

Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan (U.S.A))

Summary. Likelihood estimation and testing procedures are described for treating geographic variation in allelic fre-
quencies as a logistic function of environmental variables. The basic response curve is sigmoidal, and avoids the ne-
cessity of invoking environmental thresholds imposed by a linear response model. The one-locus two-allele, one-locus
three-alleles, and two-locus two-allele cases are explicitly treated, and the extensions to multiple alleles and loci are
indicated. Three cases of geographic variation in gametic frequencics are analyzed to illustrate the utility of these tech-
niques. A biological rationale is given for a sigmoidal responsc curve, and the utility of the logit model for univariate

and multivariate “analysis of variance’’ is indicated.

Introduction

Likelihood estimation and testing procedures have
recently been developed for the analysis of geographic
variation in allelic frequencies by Smouse and Kojima
(1972), who were concerned with testing the hypothe-
sis that genetic frequencies were correlated with the
environment. The particular form of association
postulated in that paper was specified by the regres-
sion equation:

Py =Byl + BiZsi + - 4 BrZrki {1)

where P; is the frequency of an allele in the i-th po-
pulation, the Z’s are a set of environmental measures
of interest (Z,; is a dummy regression variable of 1 for
all populations), and the f’s are the usual sort of re-
gression coefficients. The linear model given by (1)
is not the only possible choice of functional relation-
ship, but forms a familiar and convenient point of
departure for the analysis of pattern in geographic
variation (Kojima, et al., 1972). Equation (1) suffers,
however, from two limitations.

The first of these is that P,, as formulated, is not
bounded by (0, 1), as must be the case for a prob-
ability. This fact necessitates the imposition of
thresholds, and the relationship takes the form shown
in Fig. 1a. The necessity for thresholds becomes par-
ticularly important when several populations exhibit
observed frequencies of 1 or 0 (c. f. Table 3 of Kojima,
et al., 1972). Observed fixation may often arise solely
as a result of finite sampling, however, and the im-

1 Supported by AEC AT(11-1)-1552.

position of a threshold in such cases is an artifice at
best.

The second limitation is that the model is incon-
venient for multiple-locus analysis. If the two loci
are segregating independently, the likelihood function
{except for a combinatorial constant) is:

I
L{P\X) coll II Il TP Py} ¥ijk (2)
=1 fm=1 k=t
where:

Py = Py Puy] = (BiZ,) (B:Z)) (3)

is a quadratic equation in the Z’s. The index (z) refers
to the population; the indices (j) and (k&) reference
alleles at the A and B loci, respectively. The analysis
degenerates to the sum of its single-locus components.
If the two loci are not segregating independently, the
likelihood function takes the form:

I J K
L(P‘X) ooll IT HP,'ijiik (4)
=1 =1k q
where:

Py = BuZ; (5)

is a linear function in the Z’s. Although an appro-
priate test criterion to distinguish between (2) and (4)
is easily constructed, it is difficult to relate the test
to any meaningful statement about the f-coefficients.
The transition between the two models is rather for-
ced.

The objective of this paper is to suggest an alter-
native to (1), and to show how it overcomes both of
the above difficulties. This alternative is the logistic
{or logit) model of Fisher (1935) and Finney (1952).
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The Logit Model

One Locus

Let us define a regression hypothesis, not on P, but
rather on InP:

Zﬂpt == ﬂmzui ‘} ﬁnZh‘ + + ﬂikai = B;Z;
In (1 — P;) = IBQOZ()[ + ﬂzlzli ‘i‘ ‘|‘ ﬁzklhi = B;.Zz
(6)
which may be rewritten either as:
P ’
Zﬂ (1/::‘[)—) = A/l Zl (7)
where 4 = B; — B, or as:
P, = x-exp {A'Z};
(01— P) =a=[1+exp{dZ}]7. (8
This formulation has the advantage that for all real
values of the 4's and Z’s, P, is bounded by:
0=P =1 (9)
The sigmoid form of (7) is shown in Fig. 1b, and has
the same general shape as (1), while avoiding arbi-
trarily sharp thresholds. The logistic model has

received much attention in bioassay, and the reader
interested in more detail is referred to Cox (1970).
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TFig. 1. Regression of Allelic Frequency P on Environmental
Mecasure Z; (a) Linear Model P = By -+ B,Z; (b) Logistic Mo-
del n[P|(1 — P)] = A4, + A4

The logistic formulation may be extended to multi-
ple-allelic loci. Consider the three-allele case, where
the counterpart of (6} is:

In Py = BiZ;; In P,; = B3Z,;

n(1 — Py — Py) = BiZ;; {(10)
which may be rewritten either as:
Pi; Pa;
(e p ) = A (- )

— AZ,; ; (11)
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where 4; = B, — By and 4, = B, — B, or as:

Pi=oa-exp {MZ;}; Py =o-exp {42} ;
(1 — Py — Py) =«; (12)
with
x = [1 + exp {A1Z;} + exp {42}

To obtain estimates of the A-coefficients, one dif-
ferentiates the logarithm of the likelihood function
with respect to each parameter (4;), sets each of the
resulting equations equal to zero, and solves for the
coefficients. For the two allele case, one has:

Sy (Y
0d; 5 — <~ \P;

=1

(N: — Xi)\0P;
(1 — P *),57]-* o 13

where
(14)

The resulting equations may be written in matrix
form:

(5Pi . '_" 2~
{5@}2 =ZyP, (1 = P).

ZUP—P —0. (15)
The matrix Z’ is (K 4+ 1) x1, and contains the inde-
pendent regression variables for all I populations.
U = diag {N,}; P is the Ix1 vector of estimated

frequencies; P is the 71 vector of observed fre-
quencies {X;/N;}; and 0 is the I x 1 vector of zeroes.
Equation (15) is not explicitly solvable in terms of
the 4;s and one must iterate to a solution.

It can be shown that the matrix of second partial

derivatives, evaluated at P is:

62nL .
04 A" ¥4

1—P).

— (Z'WZ) (16)

where W = diag {N,P b The solution is
obtained by iterating
+ ZW 22U (P — Py)] (17)

7= 0,1, 2, ...

Ay = Ay

This is the standard Gauss-Newton procedure, and

converges to the correct solution, provided A is
finite, which will usually be the case. Since (16) is
strictly negative definite for all A, there is only one
relative extremum, and the solution to {(15) i unique.

To obtain estimates of the vectors 4, and A4, of the
three allele case, one differentiates In L as before,
and obtains the following matrix equation:

Z'5U* [P* — P* =0 (18)
where:
Z 0 |(K+1)
JI*: 1
z [0 Z'](K+1) (19)
I I
and:
U 01
¥ — 20
v [0 § U]I (20)
I I
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with U = diag {N;}, and P* and P* given, re-
spectlvely, by:

I;* _ [:):;] and i;* — [gl] (2‘1)
o 2

Direct estimates of A, and A, are not available from
(18) and one must iterate to a solution.

The matrix of second partial derivatives for the
three allele case is easily shown to be:

8 InL s
{W}ﬁ = (@R (22)
where W* is given by: _
L
W, Wy
and W, = diag {N;P; (1 — Py)}, W, = diag

(N.DPy (1 — Do)}, Wyy=W,, = diag {— N,P,;P,}.

This leads to a three-allele counterpart of (17):

Af oy = Ay + (29 WHZ¥ (22 U* (P — PY)],
vy = 0,1, 2,.. (24)

which converges to the correct solution, provided A*

is finite. Since (22) is strictly negative definite for all

A*, this solution is unique. The likelihood ratio test
criteria developed by Smouse and Kojima (1972) are
valid for the logistic model developed here as well.
The reader is referred to that paper for details.

Two Loct
The two-locus, two-allele case may be treated as
a one-locus, four-allele case. The probabilities of the
four gametes may be defined as:
In Py = BiZ;; In Pyy; = B;Zii
ln szi — B.;ZL
which may be alternatively written:

P; , ,
In (Pi;;‘) = (B, — B)' Z, = A,Z, ]

l’l’LPzn—BZ

2™

(25)

In (f"‘_%) = (B, — B, Z, = A,Z, (26)

122

Pix

or as the four-allele equivalent of (12). The estimates
of A, A,, and Ay must satisfy a four-allele equivalent
of (15) and (18). An iterative scheme similar to (24)
will yield the maximum likelihood estimates, which
are unique.

The two-locus test criteria for the regression and
lack of fit components of the geographic variation
are, respectively:

In (521) — (B,— B, Z, = A}Z,

I 2 2
Ag(AB) = — 22X Y X Xiux
Facd et k=1
X |in P,],. — In Pyl ~ ¥k (27)
AAB) = — 23 5 3 Xyx
o= 11 1 k=1 ~
X U% Pi,‘k — In Pi;‘k] ~ X%(I—J\'fi)

where
I
2 1]1\‘/2 I\
= X,,k/L\, ,

(28)

and Pj is the estimated value of P, under (25).
Various sub-hypotheses may be tested by partition-
ing Ax(A B) along similar lines to those described by
Smouse and Kojima (1972).

The hypothesis that each locus responds inde-
pendently (in logistic fashion) to the environmental
variables is equivalent to the assumption:

B, — B, — B;+ B = 1[4, — 4, — 4,1 =0.
(29)
This is shown as follows. The logit of the marginal
probability of the first locus (P;,.) is written:

In ( P, ) ln[Pl11+Pi12]

I — Pa. Piz1 4- Pina
N exp (A, Z;) - exp (A.;Zi)]
- l%[ exp (A;Z;) 1 (30)
In view of (29), this may also be written:
P\ _ A }7+‘6x7‘:7(‘/£zﬁ}]
In (l — P ) =In [e}\p (A7) {1 Cexp (A7)
= A7, (31)
which is logistic. Similarly:
Py N 4

and the two are independent. To show that inde-
pendence implies (29) it is sufficient to note that the
condition for independence is:

P1‘|1P1’)’)

PisbPinn for i=1,..,1 (33)
or alternatively:
[ b =, B, - Byt B 2
(4, — A, —Ayz, =0 [ Y

for 1=1,2..,1,
which implies (29).

A test of the validity of (29) is obtained by compar-
ing Ax(AB) of (27) with the sum of the two corres-
ponding single-locus components:

Ag(d) = — 2 E

) Xy In [Py, — In Pyl ~ yk

i
Xipln l,ﬁi-k — In f’,—.k] N)ﬁ(
(39)

where the analysis is done separately for each locus,
as described above. The test of independence is thus
seen to be:

[Ag(AB) — A(A) — Ap(B)] ~ 7k . (36)

Similar treatment is possible for A;{(AB), and the
resulting analysis is depicted in Table 1. This treat-

AR(B) = ZI

{=i1 k-

r tﬂl\l l [\’N
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Table 1. Likelihood analysis of geographic variation in two-locus gametic frequencies

Source daf

Regression 3K
FLocus A K
locus B K
Interaction KN

Lack of fit 3(1-K-1)

Among populations
T.ocus A (I-1)
[.ocus B (1-1)
Interaction (1-1)

3(1-1)

ment may be extended to multiple alleles and loci.
The linear restrictions on the B-vectors which are
required for independence among loci are more ela-
borate than (29), but the estimation and test criteria
are entirely analogous to those above.

Illustrative examples

One Locus, Two Alleles

In a study of Drosophila pavani (Kojima, et al.,
1972) a linear regression model of P on latitude, ele-
vation, and season required an environmental thre-
shold for two loci (PGM and PGI). The observed
frequencies of the PGM locus are plotted against the
regression equation (used as an environmental index)
in Tig. 2. For comparison, the data were fitted to
a logistic regression model, and the plot of observed
frequencies against the altered regression equation
(as an alternative environmental index) is shown in
Tig. 3. The fact that a whole set of populations (the
January collections) have P = 1 suggests that the
frequency is seasonally high and that finite sampling
is responsible for the apparent fixation. The logistic
model avoids the assertion that the PGM locus is
seasonally “fixed”.
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Iiig. 2. Observed FIrequencies of the IFast-Allele of Phospho-

glhuicomutase (PGM) for Populations of Drosophila pavani,

Plotted Against an Environmental Index (Estimated Lincar

Regression Iiquation) of Llevation (%)), Latitude (Z,), and
Scason (Zy)
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e
Ar(AB)

Ar(A)

Ar(B)

Ap(AB) — Ar(A) — Ar(B)
AL(4B)
Ap(4B)

Ar(A)

Ar(B)

AT(AB) - AT(:I) 7/11(1’3)

One Locus, Three Alleles

Genotype-environment relationships have been
carefully examined in the harvester ant Pogonomyr-
mex barbatus by means of principal components ana-
lysis (Johnson, et al., 1969). Clear associations were
found between allelic frequencies and environmental
variables. I have examined the frequencies of the
alleles of the Esh locus in the following fashion. The
locus is a multiple allelic system, but all except three
alleles are quite rare. I have pooled allele (6) and
these rarer alleles into a single class, and have analyz-
ed the locus as three-allele system. Only those po-
pulations with corresponding environmental measu-
rements were used, and the reduced data set consists
of twenty-five (25) collections, totalling 4806 alleles.
The analysis of geographic variation in allelic fre-
quencies is shown in Table 2. The order of fitting
shown is not the only one possible, but is the order
for which maximum variation is removed at each
stage. The order clearly effects the values of the
components.

It is worth noting that the allelic analysis shown
above is correct for diploids if one may assume Hardy-
Weinberg equilibrium within each population. This
assumption is not always justified for this example
(Johnson, et al., 1969, Table II), but is not seriously
violated except in a few cases. Both the parameter
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IFig. 3. Observed lrequencies of the Fast-Allele of Phospho

glucomutase (PGM) for Populations of Drosophila pavani,

Plotted Against an IEnvironmental Index (Estimated Logistic

Regression Iiquation) of Elevation (7)), Latitude (%,), and
Scason {Zg)
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Table 2. Likelihood analysis of geographic variation in allelic frequencies at the fish locus in

the harvester ant ( Pogonomyrmex barbatus)

Source df %2 Accum. y? 0
Regression 10 1538.17

Zy 2 993.46 993.46 64.6°%
YAVA 2 418.46 1411.92 91.89%
A A 2 44.72 1456.64 94.7%,
VAV A 2 74.52 1531.16 99.6%
Z\Z\, 2y, 24, Z, 2 7.01 1538.17 100.0%,
fLack of fit 38 - 361.34 -

Total 48 1899.51

Z, = Annual precipitation

Z, = Ave. Jan. temp.

Z, — Growing season Z, = Elevation
Estimated coefficients
A, g, i, A Iy 3
8-allele +17.91647 +.13388 —.17256 —.12545 —.006438 —.00050
4-allele +.06431 —.00983 +.12718 —.01637 —.00003

—8.41258

estimates and the test criteria must therefore be
viewed as approximate. The sizes of the components
in Table 2, however, are so large as to make signifi-
cance testing pointless.

The regression model accounts for 819, of the total
variation among populations. Elevation contributes
very little to the description if the other variables are
fitted first, and might be deleted with no real loss in
information; a model involving annual precipitation,
mean January Temperature, mean july Temperature,
and Growing Season accounts for 99.6%, of the total
regression component.

The observed frequencies of allele (8) and allele (4)
are plotted against their respective environmental
indices (regression equations) in Fig. 4 and 5, re-
spectively. Both of these indices may perhaps best be
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Lig. 4. Observed Frequencies of the (8)-Allele of Esterase-H

(Esh) for Populations of Pogonomyrmex barbatus, Plotted

Against a Logistic Environmental Index (See Table 2 for
Z-Variables)

interpreted as measures of the transition from a sub-
tropical coastal climate to an arid continental clima-
te. The agreement between observed and expected
frequencies is by no means perfect (the lack of fit
variation is highly significant), but the pattern is
nevertheless quite evident. The analysis shown in
Table 2 constitutes an informative alternative to the
principal components approach of Johnson, et al.
(1969).

Two Loct, Two Alleles Each

There is a paucity of published two-locus gametic
data for large numbers of geographically dispersed
populations. While many studies are conducted in
such a fashion that multiple-locus genotypes are
recorded for each individual, preoccupation with
single-locus patterns has precluded publishing multi-
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Iiig. 5. Observed Frequencies of the (4)-Allele of Esterase-H

(Esh) for Populations of Pogonomyrmex barbatus, Plotted

Against a Logistic ¥nvironmental Index (Sce Table 2 for
Z-Variables)
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Table 3. Environmental features and gametic frequencies of the PGM and G6PD loci for populations of

Drosophila pavani

; Gametic frequencies
Population location Month of Latitude Elevation Samp}e 4
collection size N ;g TS ST ss
Il Tabo January 33°28" 25m 104 000 1.000 000 .000
Bellavista January 33°347 600m 40 175 825 000 .000
San José de Maipo January 33°39° 967m 98 .051 949 .000 .000
Melipilla January 33°941° 164m 102 020 080 .000 .000
Volcan January 33°50” 1800m 92 152 783 .022 .043
I.a Serena March 29°55” 60m 108 278 722 .000 .000
Vicufla March 30°02° 650m 104 .328 .500 086 .086
Leyda March 33°37° 100m 106 217 .566 028 189
San José de Maipo  March 33°39° 967m 104 183 .654 .058 107
Capiapd April 27°34" 381m 108 .083 .630 000 287
Vallenar April 28°44" 384m 80 000 .638 000 .362
Rancagua April 34°107 500m 108 .306 6438 000 046
San Fernando April 34°35 334m 108 241 713 .046 000
Santa Cruz April 34°38° 164m 108 204 .630 046 120
1370 1635 .0219 L0891

7255

TE = PGM(F), GoPD(T%); F5S = PGM(F), G6PD(S); S = PGM(S), G6PD(I); SS = PGM(S), G6PD(S)

Table 4. Likelihood analysis of geographic variation in
two-locus gametic frequencies ( PGM and G6PD) for Droso-
phila pavani

Source df Vi

Regression 9 198.26%**
PGM 3 100.05%**
G6PD 3 43.08***
PGM x G6PD 3 55.13%%*

Lack of fit 30 222.37%%*

Among

populations 39 420.63***
PGM 13 200.80%* *
Go6I’D 13 185.15%**
PGM x G6PD

13 34.59**

ple locus frequencies. In addition, most studies in-
volve the assay of zygotic genotypes, and gametic
frequencies are only indirectly estimable. It should
be possible, by means of proper test-crossing, to
obtain a gametic assay in many studies, but the
desirability and/or utility of such a practice has yet
to be established.

The study of Drosophila pavani (Kojima, et al..
1972) already mentioned was conducted so that
overlapping sets of loci were assayed on individuals.
Although the two-locus genotypes were assayed as
zygotes, it is possible to estimate two-locus gametic
frequencies within a population by means of maxi-
mum likelihood procedures. The strategy is to parti-
tion the double heterozygotes into coupling and
repulsion phases in such a manner that the total
zygotic array is best predicted by the resulting two-
locus gametic frequencies. These estimated fre-
quencies may be used for the two-locus analysis
outlined above, although the test criteria must be
viewed as approximations. I have chosen to utilize

Theoret. Appl. Genetics, Vol. 45, No. 2

the PGM and G6PD loci to illustrate the analysis,
because the double heterozygotes represent no more
than 109, of any given sample. The ambiguities
arising from determining the gametic composition
of this class are therefore minimal, and the analysis
described above should constitute a good {irst appro-
ximation. The estimated gametic frequencies for
these two loci are listed for all populations in Table 3,
along with the three environmental measures of
interest. The two-locus likelihood analysis is shown
in Table 4.

The overall regression component accounts for
only about 47%, of the among populations variation,
but is nevertheless highly significant. Considering
the coarseness of the environmental variables, the
large lack of fit term is not at all surprising. The inter-
action component of the among populations term is
large, and indicates that the two loci do not vary
independently over geography. The interaction
component of the regression term is also quite large,
indicating that the patterns of variation are not
independent for the two loci. The sizes of the inter-
action terms suggest that perhaps more attention
should be focused upon multiple-locus gametic
patterns of geographic variation than has heretofore
been the case, and that some effort toward careful
gametic assay is warranted.

Discussion

I have described above the statistical utility of the
logistic model. There remains the question of whether
a sigmoidal response curve should be expected with
allelic frequencies, or whether the linear model pro-
posed by Smouse and Kojima (1972) and described
by equation (1) is more appropriate. The type of
geographic pattern to be expected depends entirely
on the model employed. 1 shall only describe two
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models below, both of the heterotic sort, but others
are possible.

Consider first a single locus with two alleles (4 and
a) and zygotic fitness coefficients (1 — fi;)11:(1—/2),
where f,; and f,; are related to the environment by:

fu‘ = Bl(] + B]Z1i + e BKZKi } (37)
fzi = Bzo - B1Z1i e BKZKi .
The equilibrium allelic frequency of the i-th popula-
tion 1s seen to be:
> fri
P=_ -
i S
= |By + Ba)l ™" By + BiZvi + o+ + BrZkil,
(38)
which is the equivalent of equation (1).

Alternatively, consider the selective model given
by the zygotic selection coefficients (1 — e /rii1:
11 — ¢~F¥), where fi; and f»; are related to the envi-
ronment by:

fii - B]()Zw' + BHZH + + IgiKZKi } (39)

foi = ByZoi + ByZvi + - + BokZgi
and the equilibrium condition for the i-th population
is given by the relation:

(o) = (hi = f2) = (B, =B 2, — 4’2,

(40)

the logistic model. The reader is referred to Endler
(1973) for a discussion of further models.

I have assumed above a complete absence of migra-
tion among populations. If migration is added to the
first model above, the pattern becomes more sig-

moid. The greater the frequency of migration, the
greater is the degree of curvature introduced. The

Received October 19, 1973

Communicated by R. W. Allard

second model becomes flatter with migration. End-
ler (1973) describes the effects of migration on several
models. In general, the effect is to yield a sigmoidal
pattern, and the logistic model described above should
be quite generally useful in the analysis of geographic
pattern in allelic frequencies.

The use of the logistic model is not restricted to the
type of regression problem described above. The Z-
variables may just as easily be chosen to represent
the types of “contrast-variables” so familiarin analy-
sis of variance. Using the same general approach
described above, one may routinely deal with ‘‘ana-
lysis of variance” for multinomial situations [gametic
frequencies], either at the univariate (one locus, two
alleles) or the multivariate (one locus, multiple
alleles; or multiple locus) levels.
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